#P1444A. Division
Division
No submission language available for this problem.
Description
Oleg's favorite subjects are History and Math, and his favorite branch of mathematics is division.
To improve his division skills, Oleg came up with $t$ pairs of integers $p_i$ and $q_i$ and for each pair decided to find the greatest integer $x_i$, such that:
- $p_i$ is divisible by $x_i$;
- $x_i$ is not divisible by $q_i$.
The first line contains an integer $t$ ($1 \le t \le 50$) — the number of pairs.
Each of the following $t$ lines contains two integers $p_i$ and $q_i$ ($1 \le p_i \le 10^{18}$; $2 \le q_i \le 10^{9}$) — the $i$-th pair of integers.
Print $t$ integers: the $i$-th integer is the largest $x_i$ such that $p_i$ is divisible by $x_i$, but $x_i$ is not divisible by $q_i$.
One can show that there is always at least one value of $x_i$ satisfying the divisibility conditions for the given constraints.
Input
The first line contains an integer $t$ ($1 \le t \le 50$) — the number of pairs.
Each of the following $t$ lines contains two integers $p_i$ and $q_i$ ($1 \le p_i \le 10^{18}$; $2 \le q_i \le 10^{9}$) — the $i$-th pair of integers.
Output
Print $t$ integers: the $i$-th integer is the largest $x_i$ such that $p_i$ is divisible by $x_i$, but $x_i$ is not divisible by $q_i$.
One can show that there is always at least one value of $x_i$ satisfying the divisibility conditions for the given constraints.
Samples
3
10 4
12 6
179 822
10
4
179
Note
For the first pair, where $p_1 = 10$ and $q_1 = 4$, the answer is $x_1 = 10$, since it is the greatest divisor of $10$ and $10$ is not divisible by $4$.
For the second pair, where $p_2 = 12$ and $q_2 = 6$, note that
- $12$ is not a valid $x_2$, since $12$ is divisible by $q_2 = 6$;
- $6$ is not valid $x_2$ as well: $6$ is also divisible by $q_2 = 6$.