#P1717E. Madoka and The Best University
Madoka and The Best University
No submission language available for this problem.
Description
Madoka wants to enter to "Novosibirsk State University", but in the entrance exam she came across a very difficult task:
Given an integer $n$, it is required to calculate $\sum{\operatorname{lcm}(c, \gcd(a, b))}$, for all triples of positive integers $(a, b, c)$, where $a + b + c = n$.
In this problem $\gcd(x, y)$ denotes the greatest common divisor of $x$ and $y$, and $\operatorname{lcm}(x, y)$ denotes the least common multiple of $x$ and $y$.
Solve this problem for Madoka and help her to enter to the best university!
The first and the only line contains a single integer $n$ ($3 \le n \le 10^5$).
Print exactly one interger — $\sum{\operatorname{lcm}(c, \gcd(a, b))}$. Since the answer can be very large, then output it modulo $10^9 + 7$.
Input
The first and the only line contains a single integer $n$ ($3 \le n \le 10^5$).
Output
Print exactly one interger — $\sum{\operatorname{lcm}(c, \gcd(a, b))}$. Since the answer can be very large, then output it modulo $10^9 + 7$.
3
5
69228
1
11
778304278
Note
In the first example, there is only one suitable triple $(1, 1, 1)$. So the answer is $\operatorname{lcm}(1, \gcd(1, 1)) = \operatorname{lcm}(1, 1) = 1$.
In the second example, $\operatorname{lcm}(1, \gcd(3, 1)) + \operatorname{lcm}(1, \gcd(2, 2)) + \operatorname{lcm}(1, \gcd(1, 3)) + \operatorname{lcm}(2, \gcd(2, 1)) + \operatorname{lcm}(2, \gcd(1, 2)) + \operatorname{lcm}(3, \gcd(1, 1)) = \operatorname{lcm}(1, 1) + \operatorname{lcm}(1, 2) + \operatorname{lcm}(1, 1) + \operatorname{lcm}(2, 1) + \operatorname{lcm}(2, 1) + \operatorname{lcm}(3, 1) = 1 + 2 + 1 + 2 + 2 + 3 = 11$