#P1851F. Lisa and the Martians

    ID: 8571 Type: RemoteJudge 3000ms 512MiB Tried: 0 Accepted: 0 Difficulty: (None) Uploaded By: Tags>bitmasksdata structuresgreedymathsortingsstringstrees

Lisa and the Martians

No submission language available for this problem.

Description

Lisa was kidnapped by martians! It okay, because she has watched a lot of TV shows about aliens, so she knows what awaits her. Let's call integer martian if it is a non-negative integer and strictly less than 2k2^k, for example, when k=12k = 12, the numbers 5151, 19601960, 00 are martian, and the numbers π\pi, 1-1, 218\frac{21}{8}, 40964096 are not.

The aliens will give Lisa nn martian numbers a1,a2,,ana_1, a_2, \ldots, a_n. Then they will ask her to name any martian number xx. After that, Lisa will select a pair of numbers ai,aja_i, a_j (iji \neq j) in the given sequence and count (aix)&(ajx)(a_i \oplus x) \& (a_j \oplus x). The operation \oplus means Bitwise exclusive OR, the operation &\& means Bitwise And. For example, (517)&(2317)=(001012100012)&(101112100012)=101002&001102=001002=4(5 \oplus 17) \& (23 \oplus 17) = (00101_2 \oplus 10001_2) \& (10111_2 \oplus 10001_2) = 10100_2 \& 00110_2 = 00100_2 = 4.

Lisa is sure that the higher the calculated value, the higher her chances of returning home. Help the girl choose such i,j,xi, j, x that maximize the calculated value.

The first line contains an integer tt (1t1041 \le t \le 10^4) — number of testcases.

Each testcase is described by two lines.

The first line contains integers n,kn, k (2n21052 \le n \le 2 \cdot 10^5, 1k301 \le k \le 30) — the length of the sequence of martian numbers and the value of kk.

The second line contains nn integers a1,a2,,ana_1, a_2, \ldots, a_n (0ai<2k0 \le a_i < 2^k) — a sequence of martian numbers.

It is guaranteed that the sum of nn over all testcases does not exceed 21052 \cdot 10^5.

For each testcase, print three integers i,j,xi, j, x (1i,jn1 \le i, j \le n, iji \neq j, 0x<2k0 \le x < 2^k). The value of (aix)&(ajx)(a_i \oplus x) \& (a_j \oplus x) should be the maximum possible.

If there are several solutions, you can print any one.

Input

The first line contains an integer tt (1t1041 \le t \le 10^4) — number of testcases.

Each testcase is described by two lines.

The first line contains integers n,kn, k (2n21052 \le n \le 2 \cdot 10^5, 1k301 \le k \le 30) — the length of the sequence of martian numbers and the value of kk.

The second line contains nn integers a1,a2,,ana_1, a_2, \ldots, a_n (0ai<2k0 \le a_i < 2^k) — a sequence of martian numbers.

It is guaranteed that the sum of nn over all testcases does not exceed 21052 \cdot 10^5.

Output

For each testcase, print three integers i,j,xi, j, x (1i,jn1 \le i, j \le n, iji \neq j, 0x<2k0 \le x < 2^k). The value of (aix)&(ajx)(a_i \oplus x) \& (a_j \oplus x) should be the maximum possible.

If there are several solutions, you can print any one.

Sample Input 1

10
5 4
3 9 1 4 13
3 1
1 0 1
6 12
144 1580 1024 100 9 13
4 3
7 3 0 4
3 2
0 0 1
2 4
12 2
9 4
6 14 9 4 4 4 5 10 2
2 1
1 0
2 4
11 4
9 4
2 11 10 1 6 9 11 0 5

Sample Output 1

1 3 14
1 3 0
5 6 4082
2 3 7
1 2 3
1 2 15
4 5 11
1 2 0
1 2 0
2 7 4

Note

First testcase: (314)&(114)=(0011211102)&(0001211102)=11012=11012&11112=11012=13(3 \oplus 14) \& (1 \oplus 14) = (0011_2 \oplus 1110_2) \& (0001_2 \oplus 1110_2) = 1101_2 = 1101_2 \& 1111_2 = 1101_2 = 13.

Second testcase: (10)&(10)=1(1 \oplus 0) \& (1 \oplus 0) = 1.

Third testcase: (94082)&(134082)=4091(9 \oplus 4082) \& (13 \oplus 4082) = 4091.

Fourth testcase: (37)&(07)=4(3 \oplus 7) \& (0 \oplus 7) = 4.