#Ø. Team Queue

    Type: Default 1000ms 128MiB

Team Queue

You cannot submit for this problem because the contest is ended. You can click "Open in Problem Set" to view this problem in normal mode.

说明

有t个团队的人正在排一个长队。每次新来一个人时,如果他有队友在排队,那么新人会插队到最后一个队友的身后。如果没有任何一个队友排队,则他会被排到长队的队尾。 输入每个团队中所有队员的编号,要求支持如下3中指令: ENQUEUE x:编号为x的人进入长队 DEQUEUE:长队的队首出队 STOP:停止模拟 对于每个DEQUEUE指令,输出出队的人的编号。

输入格式

The input will contain one or more test cases. Each test case begins with the number of teams t (1<=t<=1000). Then t team descriptions follow, each one consisting of the number of elements belonging to the team and the elements themselves. Elements are integers in the range 0 - 999999. A team may consist of up to 1000 elements. </span>
Finally, a list of commands follows. There are three different kinds of commands: 

  • ENQUEUE x - enter element x into the team queue 
  • DEQUEUE - process the first element and remove it from the queue 
  • STOP - end of test case

The input will be terminated by a value of 0 for t. 
Warning: A test case may contain up to 200000 (two hundred thousand) commands, so the implementation of the team queue should be efficient: both enqueing and dequeuing of an element should only take constant time.

输出格式

For each test case, first print a line saying "Scenario #k", where k is the number of the test case. Then, for each DEQUEUE command, print the element which is dequeued on a single line. Print a blank line after each test case, even after the last one. 

样例

2
3 101 102 103
3 201 202 203
ENQUEUE 101
ENQUEUE 201
ENQUEUE 102
ENQUEUE 202
ENQUEUE 103
ENQUEUE 203
DEQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
STOP
2
5 259001 259002 259003 259004 259005
6 260001 260002 260003 260004 260005 260006
ENQUEUE 259001
ENQUEUE 260001
ENQUEUE 259002
ENQUEUE 259003
ENQUEUE 259004
ENQUEUE 259005
DEQUEUE
DEQUEUE
ENQUEUE 260002
ENQUEUE 260003
DEQUEUE
DEQUEUE
DEQUEUE
DEQUEUE
STOP
0
Scenario #1
101
102
103
201
202
203

Scenario #2 259001 259002 259003 259004 259005 260001

</p>

第七届SWPU-ACM老生预选赛

Not Attended
Status
Done
Rule
ACM/ICPC
Problem
187
Start at
2022-9-19 14:00
End at
2022-10-28 14:00
Duration
936 hour(s)
Host
Partic.
45