#P1182F. Maximum Sine

    ID: 4818 Type: RemoteJudge 3000ms 256MiB Tried: 0 Accepted: 0 Difficulty: (None) Uploaded By: Tags>binary searchdata structuresnumber theory*2700

Maximum Sine

No submission language available for this problem.

Description

You have given integers aa, bb, pp, and qq. Let f(x)=abs(sin(pqπx))f(x) = \text{abs}(\text{sin}(\frac{p}{q} \pi x)).

Find minimum possible integer xx that maximizes f(x)f(x) where axba \le x \le b.

Each test contains multiple test cases.

The first line contains the number of test cases tt (1t1001 \le t \le 100) — the number of test cases.

The first line of each test case contains four integers aa, bb, pp, and qq (0ab1090 \le a \le b \le 10^{9}, 1p1 \le p, q109q \le 10^{9}).

Print the minimum possible integer xx for each test cases, separated by newline.

Input

Each test contains multiple test cases.

The first line contains the number of test cases tt (1t1001 \le t \le 100) — the number of test cases.

The first line of each test case contains four integers aa, bb, pp, and qq (0ab1090 \le a \le b \le 10^{9}, 1p1 \le p, q109q \le 10^{9}).

Output

Print the minimum possible integer xx for each test cases, separated by newline.

Samples

Sample Input 1

2
0 3 1 3
17 86 389 995

Sample Output 1

1
55

Note

In the first test case, f(0)=0f(0) = 0, f(1)=f(2)0.866f(1) = f(2) \approx 0.866, f(3)=0f(3) = 0.

In the second test case, f(55)0.999969f(55) \approx 0.999969, which is the largest among all possible values.