#P128C. Games with Rectangle

Games with Rectangle

No submission language available for this problem.

Description

In this task Anna and Maria play the following game. Initially they have a checkered piece of paper with a painted n × m rectangle (only the border, no filling). Anna and Maria move in turns and Anna starts. During each move one should paint inside the last-painted rectangle a new lesser rectangle (along the grid lines). The new rectangle should have no common points with the previous one. Note that when we paint a rectangle, we always paint only the border, the rectangles aren't filled.

Nobody wins the game — Anna and Maria simply play until they have done k moves in total. Count the number of different ways to play this game.

The first and only line contains three integers: n, m, k (1 ≤ n, m, k ≤ 1000).

Print the single number — the number of the ways to play the game. As this number can be very big, print the value modulo 1000000007 (109 + 7).

Input

The first and only line contains three integers: n, m, k (1 ≤ n, m, k ≤ 1000).

Output

Print the single number — the number of the ways to play the game. As this number can be very big, print the value modulo 1000000007 (109 + 7).

Samples

3 3 1

1

4 4 1

9

6 7 2

75

Note

Two ways to play the game are considered different if the final pictures are different. In other words, if one way contains a rectangle that is not contained in the other way.

In the first sample Anna, who performs her first and only move, has only one possible action plan — insert a 1 × 1 square inside the given 3 × 3 square.

In the second sample Anna has as much as 9 variants: 4 ways to paint a 1 × 1 square, 2 ways to insert a 1 × 2 rectangle vertically, 2 more ways to insert it horizontally and one more way is to insert a 2 × 2 square.