#P1512C. A-B Palindrome
A-B Palindrome
No submission language available for this problem.
Description
You are given a string $s$ consisting of the characters '0', '1', and '?'. You need to replace all the characters with '?' in the string $s$ by '0' or '1' so that the string becomes a palindrome and has exactly $a$ characters '0' and exactly $b$ characters '1'. Note that each of the characters '?' is replaced independently from the others.
A string $t$ of length $n$ is called a palindrome if the equality $t[i] = t[n-i+1]$ is true for all $i$ ($1 \le i \le n$).
For example, if $s=$"01?????0", $a=4$ and $b=4$, then you can replace the characters '?' in the following ways:
- "01011010";
- "01100110".
For the given string $s$ and the numbers $a$ and $b$, replace all the characters with '?' in the string $s$ by '0' or '1' so that the string becomes a palindrome and has exactly $a$ characters '0' and exactly $b$ characters '1'.
The first line contains a single integer $t$ ($1 \le t \le 10^4$). Then $t$ test cases follow.
The first line of each test case contains two integers $a$ and $b$ ($0 \le a, b \le 2 \cdot 10^5$, $a + b \ge 1$).
The second line of each test case contains the string $s$ of length $a+b$, consisting of the characters '0', '1', and '?'.
It is guaranteed that the sum of the string lengths of $s$ over all test cases does not exceed $2 \cdot 10^5$.
For each test case, output:
- "-1", if you can't replace all the characters '?' in the string $s$ by '0' or '1' so that the string becomes a palindrome and that it contains exactly $a$ characters '0' and exactly $b$ characters '1';
- the string that is obtained as a result of the replacement, otherwise.
If there are several suitable ways to replace characters, you can output any.
Input
The first line contains a single integer $t$ ($1 \le t \le 10^4$). Then $t$ test cases follow.
The first line of each test case contains two integers $a$ and $b$ ($0 \le a, b \le 2 \cdot 10^5$, $a + b \ge 1$).
The second line of each test case contains the string $s$ of length $a+b$, consisting of the characters '0', '1', and '?'.
It is guaranteed that the sum of the string lengths of $s$ over all test cases does not exceed $2 \cdot 10^5$.
Output
For each test case, output:
- "-1", if you can't replace all the characters '?' in the string $s$ by '0' or '1' so that the string becomes a palindrome and that it contains exactly $a$ characters '0' and exactly $b$ characters '1';
- the string that is obtained as a result of the replacement, otherwise.
If there are several suitable ways to replace characters, you can output any.
Samples
9
4 4
01?????0
3 3
??????
1 0
?
2 2
0101
2 2
01?0
0 1
0
0 3
1?1
2 2
?00?
4 3
??010?0
01011010
-1
0
-1
0110
-1
111
1001
0101010