#P1553A. Digits Sum
Digits Sum
No submission language available for this problem.
Description
Let's define $S(x)$ to be the sum of digits of number $x$ written in decimal system. For example, $S(5) = 5$, $S(10) = 1$, $S(322) = 7$.
We will call an integer $x$ interesting if $S(x + 1) < S(x)$. In each test you will be given one integer $n$. Your task is to calculate the number of integers $x$ such that $1 \le x \le n$ and $x$ is interesting.
The first line contains one integer $t$ ($1 \le t \le 1000$) — number of test cases.
Then $t$ lines follow, the $i$-th line contains one integer $n$ ($1 \le n \le 10^9$) for the $i$-th test case.
Print $t$ integers, the $i$-th should be the answer for the $i$-th test case.
Input
The first line contains one integer $t$ ($1 \le t \le 1000$) — number of test cases.
Then $t$ lines follow, the $i$-th line contains one integer $n$ ($1 \le n \le 10^9$) for the $i$-th test case.
Output
Print $t$ integers, the $i$-th should be the answer for the $i$-th test case.
Samples
5
1
9
10
34
880055535
0
1
1
3
88005553
Note
The first interesting number is equal to $9$.