#P1553F. Pairwise Modulo

    ID: 6019 Type: RemoteJudge 4000ms 256MiB Tried: 0 Accepted: 0 Difficulty: (None) Uploaded By: Tags>data structuresmath*2300

Pairwise Modulo

No submission language available for this problem.

Description

You have an array aa consisting of nn distinct positive integers, numbered from 11 to nn. Define pkp_k as pk=1i,jkaimodaj,p_k = \sum_{1 \le i, j \le k} a_i \bmod a_j, where xmodyx \bmod y denotes the remainder when xx is divided by yy. You have to find and print p1,p2,,pnp_1, p_2, \ldots, p_n.

The first line contains nn — the length of the array (2n21052 \le n \le 2 \cdot 10^5).

The second line contains nn space-separated distinct integers a1,,ana_1, \ldots, a_n (1ai31051 \le a_i \le 3 \cdot 10^5, aiaja_i \neq a_j if iji \neq j).

Print nn integers p1,p2,,pnp_1, p_2, \ldots, p_n.

Input

The first line contains nn — the length of the array (2n21052 \le n \le 2 \cdot 10^5).

The second line contains nn space-separated distinct integers a1,,ana_1, \ldots, a_n (1ai31051 \le a_i \le 3 \cdot 10^5, aiaja_i \neq a_j if iji \neq j).

Output

Print nn integers p1,p2,,pnp_1, p_2, \ldots, p_n.

Samples

Sample Input 1

4
6 2 7 3

Sample Output 1

0 2 12 22

Sample Input 2

3
3 2 1

Sample Output 2

0 3 5