#P721D. Maxim and Array
Maxim and Array
No submission language available for this problem.
Description
Recently Maxim has found an array of n integers, needed by no one. He immediately come up with idea of changing it: he invented positive integer x and decided to add or subtract it from arbitrary array elements. Formally, by applying single operation Maxim chooses integer i (1 ≤ i ≤ n) and replaces the i-th element of array ai either with ai + x or with ai - x. Please note that the operation may be applied more than once to the same position.
Maxim is a curious minimalis, thus he wants to know what is the minimum value that the product of all array elements (i.e. ) can reach, if Maxim would apply no more than k operations to it. Please help him in that.
The first line of the input contains three integers n, k and x (1 ≤ n, k ≤ 200 000, 1 ≤ x ≤ 109) — the number of elements in the array, the maximum number of operations and the number invented by Maxim, respectively.
The second line contains n integers a1, a2, ..., an () — the elements of the array found by Maxim.
Print n integers b1, b2, ..., bn in the only line — the array elements after applying no more than k operations to the array. In particular, should stay true for every 1 ≤ i ≤ n, but the product of all array elements should be minimum possible.
If there are multiple answers, print any of them.
Input
The first line of the input contains three integers n, k and x (1 ≤ n, k ≤ 200 000, 1 ≤ x ≤ 109) — the number of elements in the array, the maximum number of operations and the number invented by Maxim, respectively.
The second line contains n integers a1, a2, ..., an () — the elements of the array found by Maxim.
Output
Print n integers b1, b2, ..., bn in the only line — the array elements after applying no more than k operations to the array. In particular, should stay true for every 1 ≤ i ≤ n, but the product of all array elements should be minimum possible.
If there are multiple answers, print any of them.
Samples
5 3 1
5 4 3 5 2
5 4 3 5 -1
5 3 1
5 4 3 5 5
5 4 0 5 5
5 3 1
5 4 4 5 5
5 1 4 5 5
3 2 7
5 4 2
5 11 -5