#old1070. 基础练习 Huffuman树
基础练习 Huffuman树
说明
Huffman树在编码中有着广泛的应用。在这里,我们只关心Huffman树的构造过程。 给出一列数{pi}={p0, p1, …, pn-1},用这列数构造Huffman树的过程如下:
-
1.找到{pi}中最小的两个数,设为pa和pb,将pa和pb从{pi}中删除掉,然后将它们的和加入到{pi}中。这个过程的费用记为pa + pb。
-
2.重复步骤1,直到{pi}中只剩下一个数。
在上面的操作过程中,把所有的费用相加,就得到了构造Huffman树的总费用。
本题任务:对于给定的一个数列,现在请你求出用该数列构造Huffman树的总费用。
输入格式
输入描述:
输入的第一行包含一个正整数n(n<=100)。
接下来是n个正整数,表示p0, p1, …, pn-1,每个数不超过1000。
输入样例:
5
5 3 8 2 9
输出格式
输出描述:
输出用这些数构造Huffman树的总费用。
输出样例:
59
提示
HINT:时间限制:1.0s 内存限制:512.0MB
例如,对于数列{pi}={5, 3, 8, 2, 9},Huffman树的构造过程如下:
-
1.找到{5, 3, 8, 2, 9}中最小的两个数,分别是2和3,从{pi}中删除它们并将和5加入,得到{5, 8, 9, 5},费用为5。
-
2.找到{5, 8, 9, 5}中最小的两个数,分别是5和5,从{pi}中删除它们并将和10加入,得到{8, 9, 10},费用为10。
-
3.找到{8, 9, 10}中最小的两个数,分别是8和9,从{pi}中删除它们并将和17加入,得到{10, 17},费用为17。
-
4.找到{10, 17}中最小的两个数,分别是10和17,从{pi}中删除它们并将和27加入,得到{27},费用为27。
-
5.现在,数列中只剩下一个数27,构造过程结束,总费用为5+10+17+27=59。